在本文中,我们探索了一个改进的框架,以训练单腔神经增强模型,以识别强大的语音识别。设计的训练框架扩展了现有的混合训练标准,以利用未配对的干净语音和真实的嘈杂数据。发现未配对的干净言语对于提高实际嘈杂言论的分离语音质量至关重要。所提出的方法还对处理和未加工的信号进行混合,以减轻处理工件。单渠道Chime-3真实测试集上的实验表明,在语音识别性能方面,对在不匹配的模拟数据上训练的增强系统的语音识别性能以有监督的方式或以不受欢迎的方式对匹配的真实数据进行了显着改善。与未经处理的信号相比,使用端到端和混合声模型在未经扭曲的数据进行重新纠正的情况下,该系统已实现了16%至39%的相对减少。
translated by 谷歌翻译
General perception systems such as Perceivers can process arbitrary modalities in any combination and are able to handle up to a few hundred thousand inputs. They achieve this generality by using exclusively global attention operations. This however hinders them from scaling up to the inputs sizes required to process raw high-resolution images or video. In this paper, we show that some degree of locality can be introduced back into these models, greatly improving their efficiency while preserving their generality. To scale them further, we introduce a self-supervised approach that enables learning dense low-dimensional positional embeddings for very large signals. We call the resulting model a Hierarchical Perceiver (HiP). In sum our contributions are: 1) scaling Perceiver-type models to raw high-resolution images and audio+video, 2) showing the feasibility of learning 1M+ positional embeddings from scratch using masked auto-encoding, 3) demonstrating competitive performance on raw data from ImageNet, AudioSet, PASCAL VOC, ModelNet40 and Kinetics datasets with the same exact, unchanged model and without specialized preprocessing or any tokenization.
translated by 谷歌翻译